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Abstract. The asymptotic form of the beam break-up instability is computed up to quadrature
for an arbitrary wakefield, in the presence of a linear variation in betatron tune from head to
tail along the beam. For illustration, the result is applied to a broadband impedance (resistive
wall) and a narrow band impedance (single resonator) and benchmarked against simulation, for
parameters of interest in induction linacs.

1. Introduction

Transverse beam break-up (BBU) has become a very popular subject over the last thirty or
so years, particularly for high-current relativistic electron beams [1]. Cumulative collective
instability arises for beams in plasmas [2], bunched beams in rf linacs [3], pulsed beams in
induction linacs [4], in large-scale free-electron lasers [5], and in other venues [6, 7]. Many
methods have been proposed to control BBU [8], and all involve one of the following:
taming the wake within each cell [9, 10] or over many cells [11, 12]; taming the beam itself
by tampering with the focusing mechanism thereby introducing nonlinearities [13], or a
variation in focusing strength along the beam. The latter effect, a ‘chirp’ in betatron tune,
can be accomplished via ‘conditioning’ [14], or by way of rf quadrupole or energy variation
along the beam, a technique proposed by Balakin, Novokhatsky and Smirnov (BNS) [15].
The BNS effect in rf linacs has since been analysed by a number of workers [16, 17], and
has proven invaluable for practical operation in a large collider [18].

Here the effect of tune chirp is analysed for an unbunched, coasting beam, for an
arbitrary wake. The calculation is motivated by the need for a simple appraisal of tune
chirp for comparison with other mechanisms, as they might apply to a large induction linac
and its dominant wakefields, a resonant mode [19], and the resistive wall wake [20]. While
work presented here is of special interest for intense beams, as in the ‘two-beam accelerator’
[21], this work is also of general interest in that it provides, for the first time, an analytic
closed-form expression quantifying growth in the presence of anarbitrary wakefield. The
problem is formulated in terms of a Green’s function expressed in closed form for an
arbitrary wake in section 2, and illustrated for the example of the resistive wall in section 3
and for a resonator mode in section 4.

2. Formulation

BBU is described by an equation for the transverse displacement of the beam centroid,ξ ,
in its simplest form [3](

∂

∂z
γ
∂

∂z
+ γ k2

β

)
ξ(z, ζ ) =

∫ ζ

0
dζ ′W(ζ − ζ ′)ν(ζ ′)ξ(z, ζ ′) (1)
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where ζ = t − z/c is the displacement along the ultrarelativistic beam and varies from
0 at the beam head toτ at the beam tail, withτ the pulse length,t the time,z the axial
displacement andc the speed of light. Beam electrons remain at a fixedζ , as they propagate
in z down the beam pipe. The wakeW(ζ − ζ ′), is the Green’s function which determines
the Lorentz force on an electron atζ due to the electric and magnetic fields generated by the
beam segments atζ ′. The Budker parameterν = I/I0 where the beam current isI and is
assumed constant forζ > 0 (‘unbunched beam’) and zero forζ < 0. The Alfven constant
I0 ∼ 17 kA. The Lorentz factorγ is assumed constant inz (‘coasting beam’). The betatron
wavenumber is assumed to take the formkβ(ζ ) = k0 +1k(ζ/τ), wherek0 = 2π/λ0, and
λ0 is the betatron wavelength at the beam head.

With kβ varying along the beam, the solution of equation (1) appears intractable in
general. With a linear chirp however, the problem can be solved in closed form. We
expressξ in terms of a complex envelopeχ ,

ξ(z, ζ ) = Im{χ(z, ζ )exp(ikβ(ζ )z)} (2)

and consider the limit where the envelopeχ varies little on theλ0 length scale, i.e. the
‘strong focusing’ limit,Lg � λ0, with Lg the instability growth length. In this case an
eikonal approximation is appropriate; substituting equation (2) forξ in equation (1), we
obtain

∂χ

∂z
(z, ζ ) ≈ ν

2iγ0k0

∫ ζ

0
dζ ′W(ζ − ζ ′)χ(z, ζ ′) exp

(
−i1kz

ζ − ζ ′
τ

)
(3)

and Laplace transforming equation (3) inζ , we find

∂χ̃

∂z
(z, p) = ν

2iγ0k0
W̃

(
p + i

1kz

τ

)
χ̃(z, p) (4)

wherep is the Laplace transform variable and the tilde denotes the Laplace transform. When
1k = 0, frequency components on the beam are continuously driven by their counterpart
in the impedance. When1k 6= 0, and after travelling a distancez, the beam will have
sampled the impedance over a bandwidth1kz/τ .

Integrating equation (4) inz and inverting the Laplace transform produces the solution

χ(z, ζ ) =
∫ ζ

0
dζ ′G(z, ζ − ζ ′;1k)χ(0, ζ ′) (5)

where the Green’s function is given by

G(z, ζ ;1k) = 1

2π i

∫ +i∞

−i∞
dp expθ(z, ζ, p;1k) (6)

the contour is to the right of all poles of the integrand in the complexp-plane, and the
exponential phase is

θ = pζ + ν

2iγ0k0

∫ z

0
dz′ W̃

(
p + i

1kz′

τ

)
. (7)

The asymptotic dependence ofχ on z andζ is determined by the method of steepest descent
from the point(s) of stationary phase in thep-plane, where

θ(1)(p) = ζ − ντ

2γ0k01k

{
W̃

(
p + i

1kz

τ

)
− W̃ (p)

}
= 0 (8)

and((n)= ∂n/∂pn). The asymptotic form forχ may then be obtained from equation (5) and
depends on the character of the dominant stationary phase point(s). The contribution from
a single such point is

χ(z, ζ ) ≈ χ̃(0, p)(2πθ(2))−1/2 expθ (9)
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when this is not an inflection point, and whereθ and θ(2) are evaluated at the stationary
point. In the case of an inflection point one has

χ(z, ζ ) ≈ χ̃(0, p) 0( 1
3)

22/331/6π
(θ(3))−1/3 expθ (10)

where0( 1
3) ∼ 2.6789. In general the amplitude may include a sum over stationary points.

It will be helpful to note that ifp(z, ζ : 1k) is a stationary point satisfying equation (8),
then

p(z, ζ ;−1k) = p(z, ζ ;1k)+ i
1kz

τ
(11)

is a stationary point of equation (8) with the opposite sign of1k. Substituting this in
equation (7) (with the sign of1k reversed) one can show that the real part of the asymptotic
growth exponent isindependentof the sign of1k. Moreover one can show that|θ(n)| is also
independent of the sign of1k. Consequently asymptotic growth, as given by expressions
such as equation (9) depends on the sign of1k only through the algebraic dependence on
the incident beam spectrum. To illustrate these considerations and to derive some practical
scalings, we analyse two practical examples.

3. Resistive wall

We consider the impedance due to a resistive pipe [22],

W(ζ − ζ ′) ≈ 4√
π

1

τ
1/2
D b2

1√
ζ − ζ ′ (12)

whereτD = 4πσb2/c2, is a diffusion timescale, the pipe conductivity isσ , and b is the
pipe radius†. It is convenient to introduce a dimensionless wakefield parameter

w = 4

π1/2

(
ν

γ

)
1

k2
0b

2

(
τ

τD

)1/2

. (13)

The envelope expressed as a function ofk0z andζ/τ is parametrized by1k/k0 andw. For
example, for1k/k0→ 0 the envelope varies with exponent

Reθ ≈ 3π1/3

27/3
w2/3

(
ζ

τ

)1/3

(k0z)
2/3 (14)

and the beam tail experiences growth as exp(z/Lg)
2/3 whereLg ∼ 0.2λ0/w. The strong

focusing approximation then limits us to the rangew < 0.2 or so. Parameters of practical
interest would beλ0 ∼ 1 m, I ∼ 1.5 kA, σ ∼ 1× 1017 s−1, b ∼ 2 cm,γ ∼ 20, τ ∼ 20 ns,
andL ∼ 50 m, and these correspond tow ∼ 1× 10−3 [20]. We will consider largerw to
test the limits of strong focusing approximation.

To simplify algebraic expressions we introduce two additional parameters,

µ =
∣∣∣∣ k0

1k

∣∣∣∣3/2(τζ
)

2π1/2w

(k0z)1/2
(15)

δ = 1kz

2τ
(16)

† For smallζ , this approximate expression for the wake breaks down; the actual wake vanishes atζ → 0. This
is of formal concern in evaluating expressions like equation (6); however, the input spectra we will consider do
not sample such high-frequency behaviour and the approximate form will do.
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We exchange the variablep for q such thatp = |δ|q − iδ and let

r = 2

µ

√
q2+ 1. (17)

In terms of these quantities, the stationary point is determined by
√

2r =
√
q − i −

√
q + i (18)

which implies thatr is a root of the quartic,

r4+ µr3+ 1= 0. (19)

In terms ofr andq, the phase and second derivative are

θ = ζ(q|δ| − iδ + µr|δ|) (20)

θ(2) = 4ζ
q + 1

4µr

µ2r2|δ| . (21)

Thus the rootr determines the asymptotic growth, and there is only one root of equation (19)
satisfying equation (18). Forµ� 1 (largez) it is approximately

r ≈ exp
(
−i
π

4

)
− µ

4
. (22)

For detailed comparisons this approximate form is not adequate and we note the exact
solution forµ < 1.75,

r = 1

4
(u3/2− µ)− i

2

(
u− 1

2
µ2+ µ3

2u3/2

)1/2

(23)

where u is the root of the associated cubic(u3 − 4u − µ2 = 0) satisfying u > 2, i.e.
u = 4 sin(ϕ−π/6)/31/2 with cos(3ϕ) = 33/2µ2/16 andπ/2< ϕ < 5π/6. (In practice, faced
as one may be, with many quartics, it is simplest to rely on a quartic solving subroutine.)

As expected, the sign of the tune chirp does not appear in the real part of the exponent.
Nevertheless growth does depend markedly on this sign. Taking a unit displacement of the
beam atz = 0 for illustration, we havẽχ(0, p) = i/p, with p = q|δ| − iδ, and considering
the smallµ limit, we find

|χ | ≈ 1√
πε

exp

(√
z

L
− ε

)
×


1 1k < 0

µ2

16
1k > 0

(24)

where

ε = π

4
w2

(
τ

ζ

)(
k0

1k

)2

(25)

L = 1

π2w2

∣∣∣∣1kk0

∣∣∣∣ λ0. (26)

To check these results, we solve equation (1) numerically. In figure 1 are depicted
analytic and numerical solutions forχ at the beam tail as a function ofz, for wake-strength
parameterw = 0.1 and fractional tune chirps1k/k0 = ±0.05, 0. Clearly the amplitude
is little reduced for negative tune chirp. In figure 2, comparison is made of analytic and
numerical results, for several wake strengthsw, as a function of1k/k0. (Comparison is
made at the beam tail, since for these parameters, the maximum in amplitude along the beam
is quite close to that at the tail.) The gradual divergence for largew of the analytic result
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Figure 1. Comparison of the numerical solution of equation (1) and the analytic result of
equation (9) for|χ(z, τ )| as a function ofz, for wake-strength parameterw = 0.1 and fractional
tune chirps1k/k0 = ±0.05, 0.

Figure 2. Comparison of the numerical solution for the maximum in|χ(z, τ )| over the course
of 50λ0, with the analytic result forz = 50λ0, for several wake strengthsw, as a function of
fractional tune chirp along the beam1k/k0.

is due to the breakdown of the strong focusing approximation, and confirms the constraint
w < 0.2.

A similar analysis shows that, in general, for impedances varying asymptotically asp−r ,
with r < 1, there occurs a transition, from an exponent varying aszn, with n = 1/(1+ r),
to one varying asz(1−r), representing more gradual growth. There isno saturationin the
case of such idealized ‘broadband’ impedances.
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4. Resonator wake

At the opposite extreme from the broadband resistive wall impedance is the resonator wake
of the generic form

W(ζ) = W0
ω2

0

�
exp

(
−ω0ζ

2Q

)
sin(�ζ) (27)

for which the Laplace transform is

W̃ (p) = W0
ω2

0

ω2
0 + pω0

Q
+ p2

(28)

with � = ω0(1− (1/4Q2))1/2, andQ the quality factor. Such a wake appears in the case
of a single, dominant, TM11 mode of a microwave cavity for which the factorW0 may be
expressed in terms of a shunt impedance per unit lengthr⊥ [23], W0 = r⊥ω0/Q. In the
absence of tune chirp, the solution as a function ofk0z andω0ζ is characterized by two
parameters, the quality factorQ and the dimensionless wake amplitude,

w = νW0ω0

γ0k
2
0�

. (29)

Parameters of practical interest would beλ0 ∼ 1 m, I ∼ 1.5 kA, γ ∼ 20, τ ∼ 20 ns,
Q ∼ 6, ω0/2π ∼ 1 GHz, r⊥/Q ∼ 8 � m−1 and L ∼ 50 m, and these correspond to
w ∼ 4× 10−3. As noted in previous works there are several regimes of growth [1] and we
will specialize to the limit of a long pulse�τ � 1. In this case, with no tune chirp, the
asymptotic exponent is

Reθ = (k0zω0τw)
1/2− ω0τ

2Q
(30)

corresponding to a growth lengthLg ∼ λ0/2πwω0τ . The condition for adiabatic growth
is w < 1/(2πω0τ), or w < 1 × 10−3 for the ‘typical’ parameters. We will consider
w ∼ 1× 10−2 to test the limits of the strong focusing approximation.

To account for the chirp it is convenient to introduce the dimensionless parameters

δ = 1kz

2�τ
(31)

ε = νW0ω
2
0

4γ0�

1

1k
= 1

41kLg
. (32)

The termε is small when phase mixing is rapid on the scale of a growth length. We make
the change of variable,

p = i�(r − δ)− ω0

2Q
(33)

in terms of which the exponent in equation (7) takes the form

θ = −iδ�ζ − ω0

2Q
ζ + i�r + iε ln

(
1− r − δ
1− r + δ

1+ r − δ
1+ r + δ

)
(34)

with the logarithm defined by analytic continuation from the region ofr imaginary and
negative. After differentiation and some algebra, equation (8) results in a two-parameter
quartic polynomial inr,

r4− 2r2(1+ δ2)− 8rδ

(
ε

�ζ

)
+ (1− δ2)2 = 0 (35)
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Figure 3. Solutions of equation (35) for the rootr determining asymptotic growth in the case
of a resonator wake, as a function ofδ. Solutions correspond to (a) ε/�ζ < 1

2 and (b)
ε/�ζ > 1

2 . For smallε/�ζ saturation(Im r → 0) occurs forδ ∼ 2ε/�ζ . For largeε/�ζ ,
Im r →−(2ε/�ζ)1/2, for δ ∼ 2–3.

with coefficients independent of the sign of the tune chirp. Only one root of this quartic
results in growth; illustrative solutions for Imr are depicted in figure 3.

It is instructive to consider explicit analytical scalings. For smallζ such thatε/�ζ � 1,
Rer ∼ −|δ|, Im r ∼ −(2|ε|/�ζ)1/2 and the influence of the mode resonance at� is
diminished. Effectively the wake is linear and the impedance varies as 1/p2. In this case
saturation occurs after a range|δ| ∼ 2–3, usually well past the range of interest∼ 50λ0.
Accurate prediction of the amplitude in the intermediate regime, prior to saturation, requires
the exact solution of the quartic.

More typically one would be interested in the limitε/�ζ small; this corresponds, at
the beam tail, to the condition|1k|/k0 > w, a chirp of perhaps 1% or more. In this
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Figure 4. Depicted is the result of equation (9) (broken curve) overlayed with the simulation
for a+5% chirp, for a pulse 20 resonator periods in length,Q = 6 and wake strengthw = 0.01.
Evidently the asymptotic form converges after just a few betatron periods.

limit Im r vanishes beyondδ ∼ 2ε/�ζ , corresponding to a inflection point in the phase
lying just short of the point of maximum amplitude. This provides a rough estimate of the
length for saturation of the beam tailzsat∼ 1/1k2Lg. As one can see from equation (33)
(taking δ small, andr ∼ −1) the rootp does not exhibit a strong asymmetry in this limit,
since regardless of the sign of the chirp− Imp lies near�. To obtain an estimate of this
amplitude at saturation we apply equation (10) and after some algebra find

|χ |sat≈ 0.6
|ε2/3|
�ζ

exp

(
π |ε| − ω0ζ

2Q

)
. (36)

To check these results we may again solve equation (1) numerically. Illustrative results are
shown in figures 4–6. Parameters are fixed atτ = 40π/ω0, andQ = 6. Figure 4 compares
the asymptotic result of equation (9) with simulation for a+5% chirp andw = 1× 10−2,
indicating that close agreement can be obtained after just a few betatron periods.

Figure 5 compares the asymptotic form with rms envelopes from the simulation, versus
position for±5% and 0 chirp, withw = 1× 10−2. One can see that there is only a small
asymmetry in chirp; one can also see the inflection point just preceding saturation (the small
peaks, where equation (9) breaks down). In figure 6 the maximum in amplitude at the beam
tail in the course of propagation through 50λ0 is depicted versus chirp, for several different
wake amplitudesw. Overlayed are the corresponding analytic results: equation (10) when
zsat< 50λ0, otherwise equation (9) evaluated at 50λ0. The broken curves are the maximum
in amplitude over the entire beam, and show that for larger chirps the peak amplitude occurs
within the body of the pulse. Evidently there is no dramatic dependence on the sign of the
chirp.

5. Conclusions

BBU growth has been computed up to quadrature for an arbitrary wake in the presence of a
linear tune chirp. This result reduces the problem of computing asymptotic growth to that of
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Figure 5. Shown are the asymptotic forms for the envelopes from the simulation, versus position
for ±5% and 0 chirp, withw = 0.01 andQ = 6. Overlayed are the results of equation (9)
(broken curves). The small peaks on the analytic curves (just preceding saturation) are in the
vicinity of the inflection point where equation (9) breaks down.

Figure 6. Shown here is a survey of the maximum in amplitude over the course of propagation
through 50λ0 versus chirp, for several different wake amplitudesw, with Q = 6. Overlayed is
the analytic prediction, either the saturated or unsaturated result, as explained in the text. The
slopes on the curves change slightly at the transition from saturation within 50λ0 to unsaturated.

identifying and characterizing stationary points. The result was applied to two representative
practical examples, the broadband resistive wall impedance, and the narrow-band resonator
impedance.

In the case of the broadband impedance we saw that tune chirp does not in general
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produce saturation as one would expect from a damping mechanism (namely Landau
damping). For a broadband impedance, varying as 1/pr with r < 1 no saturation results,
although growth can be drastically diminished. In the case of a resonator mode, saturation
always results, although the form of the amplitude differs depending on the size of the chirp
|1k|/k0 versus the wake amplitudew.
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